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ARTICLE INFO ABSTRACT

Handling Editor: Adrian Covaci This paper reports the non-targeted analysis of unknown volatile chemicals in medical masks through headspace
gas chromatography-Orbitrap high-resolution mass spectrometry. In view of the difficulties that may be
encountered in the qualitative analysis of unknown substances, several typical cases and the corresponding
reliable solutions are given from the perspective of comprehensive score and retention index, chemical ionization

identification molecular formula, fragment ion detail comparison for distinguishing isomers, and identification of
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stn cslr'gfnatography alkanes. With this method, 69 volatile substances were identified in 60 masks. The identified substances were
Orbitrap divided into nine categories. Alkanes, esters, benzenes, and alcohols were the top four groups of substances

identified in masks and accounted for 34.8%, 15.9%, 10.1%, and 7.2% of the total substances, respectively. In
addition, ketones, ethers, phenolics, amides, and other substances were identified. Ethanol, 1,4-dichlorobenzene,
toluene, m-xylene, dimethyl glutarate, and N,N-dimethylacetamide had high detection rates. The identified
substances were further filtered and screened according to their detection rate, toxicity, and response intensity.
Finally, 12 high-risk volatile chemicals in medical masks were listed. This study could serve as a reference for
identifying unknown substances and a guide for monitoring volatile chemicals in masks and promoting chemical
safety improvements in products.

1. Introduction

The Coronavirus Disease 2019 (COVID-19) is rampant worldwide
and is intensely contagious among humans. Respiratory droplets and
aerosols are the main routes of transmission (Jayaweera et al., 2020;
Tang et al., 2020; Yang et al., 2020). As a simple but important personal
protective equipment, medical masks are widely used to protect people
from viral infections (Jayaweera et al., 2020; Tabatabaeizadeh, 2021).
Medical masks can be divided into disposable medical masks, medical
surgical masks, and medical protective masks (i.e., N95 masks), whose
protection capacity gradually increases (Ma et al., 2020; Zuo et al.,
2020). Medical masks are composed of a face mask and a tension band.
The former is composed of three layers: an inner layer made of a skin-
friendly material (ordinary sanitary gauze or non-woven fabric), a
middle layer made of an isolation filter (ultra-fine polypropylene fiber
melt-blown material), and an outer layer made of an antibacterial ma-
terial (ultra-fine polypropylene fiber melt-blown material). The main
regulations concerning medical masks include American Standard
ASTM F2100 and Guidance for Industry and FDA Staff Surgical Masks-
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Premarket Notification [510(K)] Submissions, European Standard
EN14683-2019, Chinese YY 0469-2011 (medical surgical masks), and
GB 19083-2010 (medical protective masks). However, a mandatory
standard or regulatory document to limit the volatile chemicals (except
for the disinfectant ethylene oxide) in masks is lacking. The European
Safety Union issued a document on its official website that personal
protective equipment such as protective masks must comply with the
requirements of Registration, Evaluation, Authorization, and Restriction
of Chemicals (REACH), which provides some guidelines for the chemical
safety of masks.

Studies on masks mainly focused on their physical and biological
indicators, including bacterial filtration efficiency, particle filtration
efficiency, synthetic blood penetration resistance, and pressure differ-
ence (Ramirez et al., 2017, Zuo et al., 2020). Previous works tended to
be on the use and protection of masks (Chen et al., 2012). Then, some
researchers had paid attention to the application of new materials and
new functions in masks (Catel-Ferreira et al., 2015). After the outbreak
of COVID-19, researchers began to study the elimination, substitution,
extended use, reuse, and disinfection of masks (Maal-Bared et al., 2020;
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Fig. 1. Workflow of non-targeted analysis for volatile unknown substances in masks.

Zorko et al., 2020), as well as the microplastic inhalation risk posed by
wearing masks (Li et al., 2021). Few studies analyzed the chemical risk
of masks, and they had a limited list of target chemicals (e.g., ethylene
oxide, dimethyldioxirane, hydrogen peroxide, ozone, formaldehyde,
isopropanol) used in the disinfection and sterilization of masks (Garcia-
Haro et al., 2021; Gnatta et al., 2021; Kumkrong et al., 2021; O’Hearn
et al., 2020; Purschke et al., 2020; Yin et al., 2020). If these chemicals
and by-products produced in disinfection remain in masks, they might
be potentially harmful to the health of users (Gnatta et al., 2021; Paul
et al., 2020; Purschke et al., 2020; Viscusi et al., 2009). For example,
Salter detected two suspicious toxins, 4-hydroxy-4-methyl-2-pentanone
and 2-hydroxy-4-methyl-2-pentanone, in the tension band of N95 masks
after they were disinfected with ethylene oxide (Salter et al., 2010). A
recent study has shown that masks was a new source of human and
environmental exposure to organophosphate esters (Fernandez-Arribas
et al., 2021). In addition, the potential chemical risks are unknown in
the raw materials used in masks and in the production, processing,
packaging, and transportation processes, where some chemicals might
be introduced. In view of the close contact and frequent use of masks
with the human body, the unknown chemicals present in masks must be
identified and their chemical risk must be evaluated.

The identification of unknown substances is usually complicated and
time consuming, and the reliability of the result is critical. Gas chro-
matography-mass spectrometry (GC-MS) is commonly used for volatile
substances, whereas liquid chromatography-mass spectrometry
(LC-MS) is used for thermally unstable and non-volatile substances
(Martinez-Bueno et al., 2017; Martinez-Bueno et al., 2019; Onghena
et al., 2015; Pleil et al., 2019). The identification of non-targeted sub-
stances is based on the use of commercial or in-house standardized
spectral libraries. The qualitative analysis of unknown substances de-
pends on the matching of ion mass and abundance ratio between the
measured and standard spectra. However, the reliability of unit mass
resolution MS identification results is limited if the spectra of homolo-
gous compounds are similar or if the differences of isomer fragment ions
are negligible (Onghena et al., 2014; Onghena et al., 2015; Pleil et al.,

2019). Orbitrap-based high-resolution mass spectrometry (HRMS) is a
powerful tool for such studies, offering resolution, mass accuracy,
sensitivity, and selectivity superior to those of traditional mass spec-
trometry (Eiler et al., 2017; Gomez-Ramos et al., 2019; Pan et al., 2019;
Yang et al., 2019). Moreover, HRMS is suited for use in developing non-
targeted screening methods and performing retrospective analysis for
any suspected or new compounds (Dominguez et al, 2020; Huysman
et al., 2019). In addition to the above advantages, GC-Orbitrap MS has
enormous potential in the non-targeted high-throughput analysis of
unknown volatile substances based on commercial standardized spectral
libraries (NIST, Wiley), high-resolution filter (HRF), retention index,
and multiple ionization modes (EI, PCI, NCI). (Belmonte-Sanchez et al.,
2018; Kwiecien et al., 2015; Yang et al., 2019). As far as we know, this
technique has not been applied to the non-targeted screening of volatile
substances in masks.

The first objective of this study is to develop a reliable non-targeted
analysis method for the rapid and efficient identification of unknown
volatile chemicals in medical masks based on headspace GC-Orbitrap
MS. The second objective of this study is to unveil high-risk volatile
chemicals in medical masks according to the detection rate, toxicity, and
response intensity of the identified substances. This study may be the
first to identify unknown volatile chemicals in masks by using non-
targeted HRMS. Hopefully, this research will capture the current sta-
tus of volatile chemicals in medical masks and provide technical support
for promoting the chemical safety improvement of masks.

2. Materials and methods
2.1. Chemicals and materials

Cy0-Cgs saturated alkanes standard mix (1000 pg/mL in n-hexane),
Cg-Co saturated alkanes standard mix (1000 pg/mL in methanol), 3,4-
dimethylbenzaldehyde (CAS 5973-71-7) and 3,5-dimethylbenzaldehyde
(CAS 5779-95-3) were all supplied by ANPEL Laboratory Technologies
(Shanghai, China). 3,4-Dichlorotoluene (CAS 95-75-0) was purchased
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Fig. 2. Identification of triethyl phosphate. (a) @ list of chromatographic peaks in the sample; @ list of substances sorted according to comprehensive scores after
retrieval from the NIST library; ® ion overlay map for substances at the retention time of 19.914 min; ® abundance of each fragment ion and deviation between the
measured mass and the theoretical mass; ® comparison of measured and theoretical mass spectra in the NIST library. (b) EI mass spectra of triethyl phosphate. (c)
PCI mass spectra of triethyl phosphate. Notes include measured mass, element composition, theoretical mass, and mass deviation (ppm).

from Tokyo Chemical Industry (Tokyo, Japan). 1,4-Dichlorobenzene
(CAS 106-46-7) was obtained from Aladdin (Shanghai China). Other
standards were obtained from Dr. Ehrenstorfer GmbH (Augsburg, Ger-
many) and Alfa Aesar (Lancaster, UK). n-Hexane and ethyl acetate were
of chromatographic grade and obtained from Fisher Scientific (Wal-
tham, MA, USA).

60 mask samples of different brands (including 18 adult medical
surgical masks, 17 adult disposable medical masks, 7 children medical
surgical masks, 13 children disposable medical masks, and 5 medical
protective masks) were obtained from online shopping and offline
pharmacy in Beijing, China.

2.2. Sample preparation

For sampling, the central part of the mask that can contact the nose
and mouth was cut into pieces less than 1 cm x 1 cm in size and
weighing 250 mg and then quickly placed in a 20 mL headspace vial.
The vial was immediately sealed by a metal screw cap with PTFE/sili-
cone septum and then placed in the headspace autosampler. Scissors
used for cutting mask samples should be cleaned with absolute ethanol
after each sample is processed to avoid cross contamination.

Blank analysis was undertaken in line with the sample to identify any
possible systematic or non-systematic contamination that might come
from experimental vessels, spacers, column losses, and so on. For each
sample and blank, the parallel injection analysis was operated at least
three times in random order.
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Fig. 3. Identification of 3,4-dimethylbenzaldehyde. (a) List of candidate substances sorted according to comprehensive scores after retrieval from the spectral library.

Compounds marked as “x x,

7 “x,” and “?” are excluded according to PCI mass spectra, ARI, comparison of the actual spectra with the theoretical spectra, and

chemical standard validation. Compounds marked with \/ are the final selected result. (b) Comparison of the actual and theoretical spectra of each candidate.

2.3. Instrument parameters

The analysis was performed using a Trace 1310 GC coupled to a
quadrupole-Orbitrap MS (Thermo Fisher Scientific, Bremen, Germany)
with a TriPlus RSH automatic sampler (including headspace injection
function). The injection port temperature was 250 °C. In electron ioni-
zation (EI) mode, split injection was adopted, with split ratio of 20:1 and
injection volume of 1 mL. In positive chemical ionization (PCI) mode,
splitless injection was used, with injection volume of 1.5 mL. Helium
(99.999% purity) was used as the carrier gas at a constant flow of 1 mL/
min. Separations were performed on a DB-WAX column (30 m x 0.25
mm x 0.25 um) using the following temperature program: 40 °C (held
for 1 min) and 5 °C /min to 230 °C (held for 5 min).

Full scan MS acquisition was conducted at an m/z range of 40 to 500.

Each sample was analyzed in EI and PCI mode respectively. The electron
energy of EI was 70 eV. Methane was used as a reaction gas in PCI mode,
and the flow rate was 1.5 mL/min. The MS transfer line was 250 °C. The
ion source temperature of EI and PCI were 280 °C and 230 °C, respec-
tively. Nitrogen gas (99.999% purity) was used for the C-trap and HCD
cell. The solvent delay time was 0 min. The mass resolution was set at
60,000 FWHM at m/z 200 and the TIC intensity threshold at 2e°. The
maximum injection time was set to 200 ms and the mass tolerance
window was set to + 5 ppm.

The headspace equilibration temperature was operated at 80 °C with
30 min equilibration time, while the syringe temperature was 100 °C.
The volatile components were released from the samples to the head-
space under the conditions settings. Then 1 mL (or 1.5 mL) of the
headspace gas was injected and analyzed by GC-Orbitrap MS.
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93| Decane, 2358-tetramethyl- | C14H30 192823157 | 807| 920777 808| 921345| 198234202 | Ves 1036 NA| NA 932/ 1-Tridecene. CI3H26. 2437-56-1 767 947186 768 94853 182202902 Yes 3% 7 o5
93 26-Di CI2H6 1310817 809 920777 834 918372 170202902 Ves 0% NA_NA 931 | E-15-Heptadecenal C17H320 78| 947491 760| O47475| 252244766 Ves 13% VA N/A
929 |Octane, S-ethyl-2-methyl- | CLIH4 62016186 | 805 920777 811 921031| 15687252 Ves 0% 1] o1 S Lbutyl2-pro.. CI2HM4 (62199502 | 758 047186 764 9481l 168187252 Yes | 13% NA NA
| 929 Undecane, 4-methyl- CL2H26 2980690 | 805 920777 806 921345 170202902 Ves 0% 11 107 931 | Pentacos-1-ene C25HS0 16960851 | 760| 947186 773 947452 350390702 |Yes 133 1152 862
929|3-Ethyl-3-methylheptane | CI0H2 | 17302.01-1 | 803| 920777| 817| 919994 142171602 No 103 NA|  NA| | 931 Seficosene, (- (C0MHO 7468530-6 | 759 947186 760, 948415 280031452 Ves | 13% NA  NA|
| 929 Octane, 233-trimethyl- M4 6016:302 | 802 920777 817 92013 156187252 No 0% NA NA 93 5-Octadecene, (E)- C18H36 720621-5 | 75| O47186| 7% 94852 252281152 Ves 13| 475 356
928 Decane C10H2 124-18-5 796 920777 813| 919732 142171602 Ves 10%| 36| 35| | 93 1-Decanol, 2-hexyl- |CI6H340 425776 | 753 947491 757 948315 22260417 No | 1336 1424 1066
| 928 Tetradecane 1430 (62594 79 920777 796 9213 19823402 Ves 0% 364 351 93| Cyclopentane, 1-butyl-2-ethyl- | CLIH22 72093-32-9 | 757 947| 762 948074 154171602 Yes 1336 VA NA
928 Octane, 24,6-trimethyl- st 62016-37-9 | 797 920777 805| 921096 156187252 Ves 103 22| 21| | 93 n-Pentadecanol |CISH320 629765 | 754 947491 757 948199 228214766 No | 1336 936 701

Fig. 4. Identification of alkanes

. (a) Overlap of mask sample with n-alkane chromatogram. (b) Comparison of the actual and theoretical spectra of a candidate of

C11Hag4. (¢) Comparison of the actual and theoretical spectra of a candidate of C;3Hz¢. (d) List of candidate substances sorted according to comprehensive scores after
retrieval from the spectral library (C;1Ha4). (e) List of candidate substances sorted according to comprehensive scores after retrieval from the spectral li-
brary (C;3Hae).

The quantitative analysis method refered to the method reported
earlier by our team (Wang et al., 2018). An automated HS sampler
(DANI 86.50, Italy) equipped with GC-MS system (Agilent 6890-5975,
USA). The HS operating conditions were as follows: equilibration time
= 15 min; equilibration temperature = 160 °C; pressing pressure = 70

a

The overall distribution map of the unknown in the mask Masks
b —m
[ Alkylbenzenesé& Chlorobenzenes
3 Alcohols mm Ketones
Medical protective (N95) Em Ethers =3 Phenolics
B Amides = Others
&%_\"‘ Adult disposable medical 2
?g&’i\t,,&'”
2
Adult medical surgical
Alcohols, 7.2 %
Children disposable medical ‘ 3 . 4 - 25
%Q Children medical surgical
Others 1 T T T T T T
bH%s 0 5 10 15 20 2 30

Fig. 5. (a) Overall distribution of the unknown substances in the mask. (b) Number of substances detected in different types of masks.

kPa; pressing time = 10 s; sample loop fill time = 10 s; and injecting
time = 20 s. The GC operating conditions were as follows: carrier gas
was helium at a flow rate of 1 mL/min; injection port was held at 230 °C
and used in the split mode with a split ratio of 20:1. The samples were
cut into pieces smaller than 5 mm. Afterward, 0.2 g of the sample was



Y. Liu et al.

Environment International 161 (2022) 107122

Se-1e° 1eS-5¢¢ 5el-1¢” le’-5¢7 @ 5e’-1e’ @ 1ef-5¢° @ Sed-1¢”
8
lnl_ ———————————————————————————————————————————————————————————————————
g
z L
- [ ]
)
g
I
g
-
5 °
o]
a
ﬁ
3
51 L
a
«
@ Lo __®_ __ & ____® e
=< °
w
S ]
=~
=
<]
g °
2
=
“
:"- )
2
3 [
< [ ] °
= ® °
z °
23 H
s o e
g H
X $
3
E\ = [ ]
13) ) T : €& E L & T S AP AT EE DD DE E e MRS
B S S Y S S T T S e
S T &L FE F& & P & T8 TR FIFLSFTLS ST E PO
ATATAT AT TN ST T TF S ST ST LT TP E F S TS T @ &
SIS AT BT G T G IS ratiee
&3 & 8 3 .
TS ST A TS S S &
LIS Ny S & v SIS e &
S S N O FIEE SR &
I v o> & A e &
» > R g <&
N 7 W
&
&
& Substances
R

Fig. 6. Summary statistics of non-targeted identified 45 substances in 60 masks. CMS: children medical surgical masks. CDM: children disposable medical masks.
AMS: adult medical surgical masks. ADM: adult disposable medical masks. N95: medical protective masks.

transferred into a 20 mL HS vial, and then 20 pL of ethyl acetate was
added. The vial was immediately sealed with an aluminum cap and
PTFE/silicone septum and then placed in the autosampler.

2.4. Data analysis

Data were collected and processed using Thermo Scientific™
TraceFinder™ 4.1 software. Fig. 1 shows the workflow of the non-
targeted analysis method for masks. It is mainly composed of data
acquisition, data analysis, and identification of unknown substances.
First, the volatile substances released from the samples were analyzed
using GC-Orbitrap MS in EI full scan mode. Second, the peaks were
resolved into a pure mass spectrum using the Deconvolution Plugin of
TraceFinder software. After the blanks were subtracted, the unique
peaks in each sample were recognized and then searched in the standard
spectrum library NIST 2014 (the positive matching index SI was
involved). The matching results were further filtered using the accurate
mass information. The HRF value represents the percentage of the ac-
curate mass of the fragment ions in the mass spectrum consistent with
the elemental composition of the corresponding fragment ions in the
standard spectrum library. Therefore, the higher the HRF and SI values,
the higher the reliability of the results. Before sample analysis, the mixed
solution of C¢—Cys n-alkanes was analyzed using the same separation
method to determine the retention time of each n-alkane, which was
used to calculate the retention index of unknown substances. The de-
viation of retention index (ARI) was finally calculated by comparing it
with the retention index of compounds included in the library. A smaller
ARI means that the result is more reliable. Third, the qualitative analysis
of unknown substances was carried out according to four identification
steps. Step 1 is based on the comprehensive score (SI, HRF, etc.) and
ARI. In theory, the reliability of tentative identification is high when the
only substance which meets these conditions that SI > 700, HRF > 90,
and ARI < 100. In step 2, if multiple results meet the above

requirements, the molecular ion peak and the molecular formula were
confirmed by measuring the PCI data to distinguish the interferents with
similar scores. In step 3, the most likely substances were verified from
various isomers by comparing the tiny differences in the details of
characteristic fragment ions, isotope information, and ARI. Relatively
reliable tentatively qualitative results were obtained in the above three
steps. In step 4, individual substances, especially isomers with very
similar structures, were finally identified by available chemical stan-
dards. Finally, all identified volatiles in the samples were classified and
analyzed, and then a list of high-risk volatile substances in medical
masks was introduced according to the detection rate, toxicity, and
response intensity of these substances.

3. Results and discussion
3.1. Non-targeted analysis of unknown substances

3.1.1. Qualitative analysis based on comprehensive score and PCI

After the deconvolution process and the deduction of blanks, all
unknown peaks detected above the threshold 2e° in each sample were
considered. The search results were ranked according to the compre-
hensive score of SI and HRF. ARI is also an important parameter for
qualitative analysis. However, some compounds do not have retention
index data in the NIST library; therefore, their ARI cannot be obtained.

Fig. 2a shows the unknown peak at 19.914 min in the E-01 sample.
The highest comprehensive score was triethyl phosphate, its SI value
was 823, the HRF value was 99.6347, and the ARI was 11. The score
difference between it and other candidates was not very significant. In
addition, other candidates had no ARI to refer to. However, the mo-
lecular formula of these candidates varied. Thus, the molecular ion peak
of the compound can be determined by PCI. As a soft ionization method,
the molecular adduct ions ([M + H] " and [M + C3Hs]™) can be obtained
by PCI when using methane as the reaction gas so that the molecular
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Table 1

High-risk volatile chemicals in masks.

Notes

Detection
rate (%)

Identification

step

[M + H]" peak ion
(m/z) error (ppm)

[M]™" peak ion

Base peak ion
(m/z) error
(ppm)

HRF ARI

SI

CAS No.

Formula

Retention

Compounds

No.

(m/z) error (ppm)

score

score

time (min)

Group 2B carcinogen,

46.67

4

146.97627 (-0.07)

145.96836
(-0.69)

145.96836
(-0.69)

7

106-46-7 842 86.00

CeH4Cl,

14.450

1,4-Dichlorobenzene

1

Restricted by Oeko-Tex

Standard 100

Group 3 carcinogen
Group 3 carcinogen

21.67

3
3

93.07001 (1.40)

92.06196 (-0.98)
106.07763
(-0.66)

91.05428 (0.37)

3
4

100.00

898
924

108-88-3
106-42-3,
108-38-3,
95-47-6
75-21-8

C7Hg
CgHio

4.841

Toluene

2

5.00, 16.67,
11.67

107.08563 (0.93)

91.05419 (-0.51)

98.33

6.774, 6.918,
7.926

Xylenes (p, m, 0)

3-5

Group 1 carcinogen
Group 2B carcinogen

Group 4 carcinogen

3.33
6.67

3
3
2
1

44.02567 (0.40) 45.03336 (-2.89)

44.02567 (0.08)

99.92
98.36
99.98
99.79

925
884
719
900

CH,0
CgHio

1.809
6.607
30.511
13.682

Ethylene oxide

6
7
8

107.08558 (0.60)
114.09146 (1.05)
88.07577 (0.91)

106.07771 (0.08)
113.08352 (0.50)
87.06782 (-0.57)

91.05422 (-0.08)

3
/
4

100-41-4
105-60-2
127-19-5

Ethylbenzene

13.33
15.00

85.05219 (-0.30)

CeH11NO
C4HoNO

Caprolactam

N,N-

Restricted by Oeko-Tex

87.06785 (-0.29)

Standard 100 and AAFA

RSL

Dimethylacetamide

Restricted by Oeko-Tex

5.00

3

73.05219 (-0.41) 74.06010 (0.81)

73.05222 (0.06)

3

99.93

894

68-12-2

C3H,NO

11.614

N,N-

10

Standard 100 and AAFA

RSL

Dimethylformamide

Restricted by REACH

3.33

2
3

100.07569 (-0.01)
161.08090 (0.37)

99.06788 (0.10)

98.06010 (0.61)
100.05174
(-1.41)

12
7

96.90
99.79

704
780

872-50-4
1119-40-0

CsHsNO
C7H;1204

20.248
20.656

N-Methylpyrrolidone
Dimethyl glutarate

16.67
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weight and molecular formula of the compound can be clearly identi-
fied. The mass spectra of the unknown substance in EI and PCI ionization
modes are shown in Fig. 2b and 2c, respectively. The basic peak m/z
183.07812 in Fig. 2¢ can be inferred as the protonated molecular ion
peak ([M + H]™). On the basis of the possible element composition and
isotopic information, the molecular formula of the substance was
calculated to be CgH1404P. In addition, m/z 211.10949 was very sig-
nificant, that is, the [M + CyHs]" addition peak of the substance. The
deviations of the two ions from their theoretical accurate masses were
—0.26 and —0.56 ppm, respectively. As shown in Fig. 2b, the deviation
of all fragment ions from the theoretical accurate mass was less than + 1
ppm. In EI mode, a weak molecular ion peak can also be observed.
Therefore, the unknown substance can be tentatively identified as
triethyl phosphate.

3.1.2. Detailed comparison of fragment ions for distinguishing isomers

Although PCI data can aid in determining the molecular ion of un-
known substances, unknown substances are still not easy to identify -
when most of the candidates are isomers. For example, in identifying
3,4-dimethylbenzaldehyde, deconvolution results provided 16 candi-
dates, most of which are isomers. The candidate compounds were
numbered one by one, as shown in Fig. 3a, to facilitate the description of
the results. The scores of these substances were very close. Four of them
had ARI values less than 100, and nine of them had no library RI to refer
to.

First, the molecular mass of 134.07262 was determined by PCI, and
the candidates of No. 8 and Nos. 10-14 can be excluded (marked with
the symbol XX). Then, the remaining 10 isomers with molecular formula
CgH1(O were further identified. The ARI values of No. 1, 3, 6, 9, and 15
candidates were greater than 80. Thus, they can be excluded and marked
as X. Then, the candidate Nos. 4, 7, and 16 can be excluded by
comparing the actual spectrum with the theoretical spectrum, marked as
?. As shown in Fig. 3b, No. 4 could produce the fragment ions m/z
115.05423, 116.06205, and 119.0914, but these ions were not found in
the sample spectrum. Similarly, the characteristic ions of Nos. 7 and 16
were slightly different from the unknown substance, which are marked
in red in Fig. 3b.

For No. 2 and 5 candidates, the evaluation indexes (SI, HRF, and ARI)
were in line with the theoretical requirements. Although the score and
ARI of No. 2 was slightly superior, the structural difference between
them was only the position of the methyl group. We used the chemical
standard for confirmation to obtain accurate identification results. Re-
sults showed that the retention times of 3,4-dimethylbenzaldehyde and
3,5-dimethylbenzaldehyde were 23.00 and 22.70 min, respectively. The
retention time of the former is consistent with that of the unknown peak.

3.1.3. Identification of alkanes

On the basis of the preliminary screening results, the components
with the highest content and detection rate were different alkanes. As we
all know, the mass spectrum information of alkane isomers has a strong
similarity, which makes the accurate identification of alkanes very
complex. Alkanes can be studied according to the retention behavior,
chain length, and molecular weight of alkanes and fragment ions in the
database. Alkanes with the same carbon number can be divided into an
isomer group (Xu et al., 2020). Some researchers also indicated that
most of the studies on alkanes are n-alkanes, and only the number of C
needs to be studied for branched alkanes (Zhang et al., 2021). We have
carried out some exploration to obtain detailed results.

Fig. 4a is the overlap of the chromatograms of a mask sample and a
standard solution of Cg¢-C1¢ n-alkanes under the same separation con-
ditions. Twenty-four peaks were preliminarily identified as alkanes and
subjected to further analysis. Fig. 4b and 4c provide the characteristic
fragments of saturated and unsaturated alkanes, respectively. We aimed
to obtain the molecular ion peaks of these compounds by the soft ioni-
zation PCI method. However, the molecular ion peak of most alkanes
cannot be obtained even in PCI mode because of the poor stability of the
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Fig. 7. Residue detection results of 12 high-risk substances in masks. (Boxes represent the 25th to 75th percentiles, solid lines in the boxes are the median values, red
squares are the mean values, and error bars represent the 5th and 95th percentiles).

C-C bond of alkanes. Finally, we identified partial alkanes according to
the peak time of n-alkanes, positive and negative correlation scores (SI
and RSI), HRF, AR, and characteristic fragment ions. Taking 1-tridecene
as an example, the unknown compound was determined to be an un-
saturated alkane by the characteristic ions 69.06983, 83.08555, and
97.10123 in Fig. 4c. Fig. 4e shows a variety of candidate results of this
unknown compound. It was tentatively identified as 1-tridecane ac-
cording to the comprehensive score and ARIL. Fig. 4b and 4d show the
identification process of saturated alkanes. The identification process of
compounds with substance names in Table S1 (Supplementary mate-
rials) referred to the identification process of 1-tridecene. Compounds
without substance names in Table S1 were only identified as the mo-
lecular formula.

3.2. Screening of volatile chemicals in masks

On the basis of the above non-targeted qualitative method, 69 sub-
stances were found in 60 samples of masks in all. The identified sub-
stances were divided into nine categories. Fig. 5a shows the categories
and proportions of these substances. Alkanes, esters, benzenes, and al-
cohols were the top four groups of substances identified in masks and
accounted for 34.8%, 15.9%, 10.1%, and 7.2% of the total substances,
respectively. In addition, ketones, ethers, phenolics, amides, and other
substances were identified. Fig. 5b shows the distribution of identified
substances in different types of masks. The test results for different
masks were slightly different. Relatively more chemical substances were
detected in disposable medical masks for adults and children.

Except for alkanes, the semi-quantitative analysis of 45 other iden-
tified substances was carried out. In Fig. 6, the abscissa is the substances,
the ordinate is the mask samples, the circle represents the detection of
the substance, and the depth of the circle color represents the peak area
of the extracted base peak ion of the substance. Ethanol had the highest
detection rate in mask samples, reaching 70.0%, and its content in the
samples was relatively high, especially in children’s medical surgical
masks. In addition, the detection rates of 1,4-dichlorobenzene (46.7%),
toluene (21.7%), m-xylene (16.7%), dimethyl glutarate (16.7%), N,N-
dimethylacetamide (15.0%), caprolactam (13.3%), o-xylene (11.7%)
were relatively high. Although ethylene oxide was only detected in two
masks, they all had response values as high as 5e®-1e°. According to
available data, more substances were detected in children’s masks than
in adult masks, which may be related to the colored patterns on the

surface of children’s masks.

The detailed information of all the non-targeted identified sub-
stances is presented in Tables S1 and S2 (Supplementary material). The
identified substances were further filtered and screened according to
their detection rate, toxicity, and response intensity. Finally, 12 high-
risk volatile chemicals in masks were listed. Table 1 lists the name,
CAS number, scores, ion mass deviation (ion error), detection rate,
hazards of substances, and regulations involved. According to Schy-
manski’s confidence level criteria (Schymanski et al., 2014), the sub-
stances in Table 1 belong to level 1 (confirmed structure) after they were
verified by standards. In Table S2, the substance marked as 4 in the
identification step also belongs to level 1, and other substances belong to
level 2 (probable structure).

Some of these substances were considered carcinogenic. For
example, ethylene oxide was classified as group 1 carcinogens (carci-
nogenic to humans) by the International Agency for Research on Cancer
(IARC, 2020). 1,4-Dichlorobenzene and ethylbenzene were classified as
group 2B carcinogen (possibly carcinogenic to humans). Toluene, and
xylene were categorized as group 3 carcinogens (not classifiable as to
their carcinogenicity to humans). Some substances were restricted in
textile related regulations. For example, 1,4-dichlorobenzene, N,N-
dimethylacetamide, and N,N-dimethylformamide were restricted by
the International Environmental Textile Association Oeko-Tex Standard
100. The latter two were also listed in the RSL list of the American
Apparel and Footwear Association. N-Methylpyrrolidone was restricted
by REACH regulations. Other substances, such as dimethyl glutarate,
can irritate the human eye, respiratory system, and skin.

A few months later, we supplemented the experiment and quanti-
tatively analyzed the residues of high-risk substances in mask samples.
The mask samples were partially inconsistent with the previous non-
targeted screening samples, but the test results were basically the
same. Caprolactam was detected in 20 samples with a content range of
0.23-51.3 mg/kg, which has not been paid attention to before. It is
worth noting that it is not very prominent in Fig. 6, which is related to its
high boiling point (272.5 °C). Therefore, the amount of volatilization is
not only related to the content, but also related to the boiling point.
Ethylene oxide was detected in 9 samples, with the content of 0.25-5.2
mg/kg, which was less than the limit of 10 mg/kg in China’s mask
standards. N-methylpyrrolidone was detected in 7 samples, and the
content was 0.23-6.4 mg/kg, which was far less than the limit of 3000
mg/kg in REACH regulations. See Fig. 7 for detailed detection results of
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other substances. The potential risks to people caused by the presence of
these substances in masks need to be further studied.

4. Conclusion

A non-targeted headspace GC-Orbitrap MS method was developed
for the screening of unknown volatile substances in medical masks.
Several typical cases and solutions with different levels of difficulty were
provided to solve the problems encountered in the qualitative analysis.
As such, the accuracy of identifying unknown substances can be
ensured. A total of 69 volatile substances were identified in the masks.
These substances were further filtered and screened, and 12 high-risk
volatile chemicals in masks were finally listed. This work can provide
a new path and certain guidance for screening potential chemical haz-
ards of masks and other products. The next step is to expand the variety
of mask products and carry out exposure assessment and risk assessment
of identified high-risk substances to provide scientific data for evalu-
ating the impact of masks on human health and promoting product
safety.
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